java集合之ConcurrentHashMap源码分析(一)

devtool · · 520 次点击 · 开始浏览    置顶
这是一个创建于 的主题,其中的信息可能已经有所发展或是发生改变。
## 开篇问题 (1)ConcurrentHashMap与HashMap的数据结构是否一样? (2)HashMap在多线程环境下何时会出现并发安全问题? (3)ConcurrentHashMap是怎么解决并发安全问题的? (4)ConcurrentHashMap使用了哪些锁? (5)ConcurrentHashMap的扩容是怎么进行的? (6)ConcurrentHashMap是否是强一致性的? (7)ConcurrentHashMap不能解决哪些问题? (8)ConcurrentHashMap中有哪些不常见的技术值得学习? ## 简介 ConcurrentHashMap是HashMap的线程安全版本,内部也是使用(数组 + 链表 + 红黑树)的结构来存储元素。 相比于同样线程安全的HashTable来说,效率等各方面都有极大地提高。 ## 各种锁简介 这里先简单介绍一下各种锁,以便下文讲到相关概念时能有个印象。 (1)synchronized java中的关键字,内部实现为监视器锁,主要是通过对象监视器在对象头中的字段来表明的。 synchronized从旧版本到现在已经做了很多优化了,在运行时会有三种存在方式:偏向锁,轻量级锁,重量级锁。 偏向锁,是指一段同步代码一直被一个线程访问,那么这个线程会自动获取锁,降低获取锁的代价。 轻量级锁,是指当锁是偏向锁时,被另一个线程所访问,偏向锁会升级为轻量级锁,这个线程会通过自旋的方式尝试获取锁,不会阻塞,提高性能。 重量级锁,是指当锁是轻量级锁时,当自旋的线程自旋了一定的次数后,还没有获取到锁,就会进入阻塞状态,该锁升级为重量级锁,重量级锁会使其他线程阻塞,性能降低。 (2)CAS CAS,Compare And Swap,它是一种乐观锁,认为对于同一个数据的并发操作不一定会发生修改,在更新数据的时候,尝试去更新数据,如果失败就不断尝试。 (3)volatile(非锁) java中的关键字,当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看得到修改的值。(这里牵涉到java内存模型的知识,感兴趣的同学可以自己查查相关资料) volatile只保证可见性,不保证原子性,比如 volatile修改的变量 i,针对i++操作,不保证每次结果都正确,因为i++操作是两步操作,相当于 i = i +1,先读取,再加1,这种情况volatile是无法保证的。 (4)自旋锁 自旋锁,是指尝试获取锁的线程不会阻塞,而是循环的方式不断尝试,这样的好处是减少线程的上下文切换带来的开锁,提高性能,缺点是循环会消耗CPU。 (5)分段锁 分段锁,是一种锁的设计思路,它细化了锁的粒度,主要运用在ConcurrentHashMap中,实现高效的并发操作,当操作不需要更新整个数组时,就只锁数组中的一项就可以了。 (5)ReentrantLock 可重入锁,是指一个线程获取锁之后再尝试获取锁时会自动获取锁,可重入锁的优点是避免死锁。 其实,synchronized也是可重入锁。 ## 源码分析 ### 构造方法 ```java public ConcurrentHashMap() { } public ConcurrentHashMap(int initialCapacity) { if (initialCapacity < 0) throw new IllegalArgumentException(); int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY : tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); this.sizeCtl = cap; } public ConcurrentHashMap(Map<? extends K, ? extends V> m) { this.sizeCtl = DEFAULT_CAPACITY; putAll(m); } public ConcurrentHashMap(int initialCapacity, float loadFactor) { this(initialCapacity, loadFactor, 1); } public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap; } ``` 构造方法与HashMap对比可以发现,没有了HashMap中的threshold和loadFactor,而是改用了sizeCtl来控制,而且只存储了容量在里面,那么它是怎么用的呢?官方给出的解释如下: (1)-1,表示有线程正在进行初始化操作 (2)-(1 + nThreads),表示有n个线程正在一起扩容 (3)0,默认值,后续在真正初始化的时候使用默认容量 (4)> 0,初始化或扩容完成后下一次的扩容门槛 至于,官方这个解释对不对我们后面再讨论。 ### 添加元素 ```java public V put(K key, V value) { return putVal(key, value, false); } final V putVal(K key, V value, boolean onlyIfAbsent) { // key和value都不能为null if (key == null || value == null) throw new NullPointerException(); // 计算hash值 int hash = spread(key.hashCode()); // 要插入的元素所在桶的元素个数 int binCount = 0; // 死循环,结合CAS使用(如果CAS失败,则会重新取整个桶进行下面的流程) for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) // 如果桶未初始化或者桶个数为0,则初始化桶 tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 如果要插入的元素所在的桶还没有元素,则把这个元素插入到这个桶中 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) // 如果使用CAS插入元素时,发现已经有元素了,则进入下一次循环,重新操作 // 如果使用CAS插入元素成功,则break跳出循环,流程结束 break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) // 如果要插入的元素所在的桶的第一个元素的hash是MOVED,则当前线程帮忙一起迁移元素 tab = helpTransfer(tab, f); else { // 如果这个桶不为空且不在迁移元素,则锁住这个桶(分段锁) // 并查找要插入的元素是否在这个桶中 // 存在,则替换值(onlyIfAbsent=false) // 不存在,则插入到链表结尾或插入树中 V oldVal = null; synchronized (f) { // 再次检测第一个元素是否有变化,如果有变化则进入下一次循环,从头来过 if (tabAt(tab, i) == f) { // 如果第一个元素的hash值大于等于0(说明不是在迁移,也不是树) // 那就是桶中的元素使用的是链表方式存储 if (fh >= 0) { // 桶中元素个数赋值为1 binCount = 1; // 遍历整个桶,每次结束binCount加1 for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { // 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false) // 并退出循环 oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { // 如果到链表尾部还没有找到元素 // 就把它插入到链表结尾并退出循环 pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { // 如果第一个元素是树节点 Node<K,V> p; // 桶中元素个数赋值为2 binCount = 2; // 调用红黑树的插入方法插入元素 // 如果成功插入则返回null // 否则返回寻找到的节点 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { // 如果找到了这个元素,则赋值了新值(onlyIfAbsent=false) // 并退出循环 oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } // 如果binCount不为0,说明成功插入了元素或者寻找到了元素 if (binCount != 0) { // 如果链表元素个数达到了8,则尝试树化 // 因为上面把元素插入到树中时,binCount只赋值了2,并没有计算整个树中元素的个数 // 所以不会重复树化 if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); // 如果要插入的元素已经存在,则返回旧值 if (oldVal != null) return oldVal; // 退出外层大循环,流程结束 break; } } } // 成功插入元素,元素个数加1(是否要扩容在这个里面) addCount(1L, binCount); // 成功插入元素返回null return null; } ``` 整体流程跟HashMap比较类似,大致是以下几步: (1)如果桶数组未初始化,则初始化; (2)如果待插入的元素所在的桶为空,则尝试把此元素直接插入到桶的第一个位置; (3)如果正在扩容,则当前线程一起加入到扩容的过程中; (4)如果待插入的元素所在的桶不为空且不在迁移元素,则锁住这个桶(分段锁); (5)如果当前桶中元素以链表方式存储,则在链表中寻找该元素或者插入元素; (6)如果当前桶中元素以红黑树方式存储,则在红黑树中寻找该元素或者插入元素; (7)如果元素存在,则返回旧值; (8)如果元素不存在,整个Map的元素个数加1,并检查是否需要扩容; 添加元素操作中使用的锁主要有(自旋锁 + CAS + synchronized + 分段锁)。 为什么使用synchronized而不是ReentrantLock? 因为synchronized已经得到了极大地优化,在特定情况下并不比ReentrantLock差。 --- 未完待续~~
520 次点击  
加入收藏 微博
暂无回复
添加一条新回复 (您需要 登录 后才能回复 没有账号 ?)
  • 请尽量让自己的回复能够对别人有帮助
  • 支持 Markdown 格式, **粗体**、~~删除线~~、`单行代码`
  • 支持 @ 本站用户;支持表情(输入 : 提示),见 Emoji cheat sheet
  • 图片支持拖拽、截图粘贴等方式上传